Robust Bell Inequalities from Communication Complexity
نویسندگان
چکیده
The question of how large Bell inequality violations can be, for quantum distributions, has been the object of much work in the past several years. We say a Bell inequality is normalized if its absolute value does not exceed 1 for any classical (i.e. local) distribution. Upper and (almost) tight lower bounds have been given in terms of number of outputs of the distribution, number of inputs, and the dimension of the shared quantum states. In this work, we revisit normalized Bell inequalities together with another family: inefficiency-resistant Bell inequalities. To be inefficiency-resistant, the Bell value must not exceed 1 for any local distribution, including those that can abort. Both these families of Bell inequalities are closely related to communication complexity lower bounds. We show how to derive large violations from any gap between classical and quantum communication complexity, provided the lower bound on classical communication is proven using these lower bounds. This leads to inefficiency-resistant violations that can be exponential in the size of the inputs. Finally, we study resistance to noise and inefficiency for these Bell inequalities. 1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.2.3 Tradeoffs between Complexity Measures
منابع مشابه
Bell's inequalities and quantum communication complexity.
We prove that for every Bell's inequality, including those which are not yet known, there always exists a communication complexity problem, for which a protocol assisted by states which violate the inequality is more efficient than any classical protocol. Violation of Bell's inequalities is the necessary and sufficient condition for quantum protocol to beat the classical ones.
متن کاملBell inequalities and entanglement
We discuss general Bell inequalities for bipartite and multipartite systems, emphasizing the connection with convex geometry on the mathematical side, and the communication aspects on the physical side. Known results on families of generalized Bell inequalities are summarized. We investigate maximal violations of Bell inequalities as well as states not violating (certain) Bell inequalities. Fin...
متن کامل2 Bell Inequalities
We discuss general Bell inequalities for bipartite and multipartite systems, emphasizing the connection with convex geometry on the mathematical side, and the communication aspects on the physical side. Known results on families of generalized Bell inequalities are summarized. We investigate maximal violations of Bell inequalities as well as states not violating (certain) Bell inequalities. Fin...
متن کاملDeriving Tight Bell Inequalities for 2 Parties with Many 2-valued Observables from Facets of Cut Polytopes
Relatively few families of Bell inequalities have previously been identified. Some examples are the trivial, CHSH, Imm22, and CGLMP inequalities. This paper presents a large number of new families of tight Bell inequalities for the case of many observables. For example, 44,368,793 inequivalent tight Bell inequalities other than CHSH are obtained for the case of 2 parties each with 10 2-valued o...
متن کاملBell inequalities with auxiliary communication.
What is the communication cost of simulating the correlations produced by quantum theory? We generalize Bell inequalities to the setting of local realistic theories augmented by a fixed amount of classical communication. Suppose two parties choose one of M two-outcome measurements and exchange 1 bit of information. We present the complete set of inequalities for M=2, and the complete set of ine...
متن کامل